Relabeling algorithm for retrieval of noisy instances and improving prediction quality
نویسندگان
چکیده
A relabeling algorithm for retrieval of noisy instances with binary outcomes is presented. The relabeling algorithm iteratively retrieves, selects, and re-labels data instances (i.e., transforms a decision space) to improve prediction quality. It emphasizes knowledge generalization and confidence rather than classification accuracy. A confidence index incorporating classification accuracy, prediction error, impurities in the relabeled dataset, and cluster purities was designed. The proposed approach is illustrated with a binary outcome dataset and was successfully tested on the standard benchmark four UCI repository dataset as well as bladder cancer immunotherapy data. A subset of the most stable instances (i.e., 7% to 51% of the sample) with high confidence (i.e., between 64%-99.44%) was identified for each application along with most noisy instances. The domain experts and the extracted knowledge validated the relabeled instances and corresponding confidence indexes. The relabeling algorithm with some modifications can be applied to other medical, industrial, and service domains.
منابع مشابه
Steganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images
In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...
متن کاملReal-time Prediction and Synchronization of Business Process Instances using Data and Control Perspective
Nowadays, in a competitive and dynamic environment of businesses, organizations need to moni-tor, analyze and improve business processes with the use of Business Process Management Systems(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-lenges of this area of research that has attracted lots of researchers. In this paper, we present a...
متن کاملAn Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem
The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...
متن کاملPublic Transport Ontology for Passenger Information Retrieval
Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2010